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Abstract. We present the statistical-mechanical theory of semiflexible polymers based on the connection
between the Kratky-Porod model and the quantum rigid rotator in an external homogeneous field, and
treatment of the latter using the quantum mechanical propagator method. The expressions and relations
existing for flexible polymers can be generalized to semiflexible ones, if one replaces the Fourier-Laplace
transform of the end-to-end polymer distance, 1/(k2/3+p), through the matrix P̃ (k, p) = (I+ikDM)−1D,
where D and M are related to the spectrum of the quantum rigid rotator, and considers an appropriate
matrix element of the expression under consideration. The present work provides also the framework to
study polymers in external fields, and problems including the tangents of semiflexible polymers. We study
the structure factor of the polymer, the transversal fluctuations of a free end of the polymer with fixed
tangent of another end, and the localization of a semiflexible polymer onto an interface. We obtain the
partition function of a semiflexible polymer in half space with Dirichlet boundary condition in terms of
the end-to-end distribution function of the free semiflexible polymer, study the behaviour of a semiflexible
polymer in the vicinity of a surface, and adsorption onto a surface.

PACS. 36.20.-r Macromolecules and polymer molecules – 61.41.+e Polymers, elastomers, and plastics –
82.35.Gh Polymers on surfaces; adhesion

1 Introduction

Polymers with contour length L much larger than the per-
sistence length lp, which is the correlation length for the
tangent-tangent correlation function along the polymer
and is quantitative measure of the polymer stiffness, are
flexible and are described by using the tools of quantum
mechanics and quantum field theory [1–5]. If the chain
length decreases, the chain stiffness becomes an important
factor. Many polymer molecules have internal stiffness and
cannot be modelled by the model of flexible polymers de-
veloped by Edwards [1].

The standard coarse-graining model of a wormlike
or a semiflexible polymer was proposed by Kratky and
Porod [6]. A few first moments of G(r, N) were computed
in [7–10]. The literature on the earlier work on semiflexi-
ble polymers can be found in the book by Yamakawa [11].
For recent work see [12–24] (and the references therein).
Despite a considerable interest and immense efforts in last
decades there is no theory of semiflexible polymers provid-
ing a general tool for treating problems including semiflex-
ible polymers.

In this article we present the theory of semiflexi-
ble polymers based on the relation between the Kratky-
Porod model and the quantum rigid rotator in an external
field [4,10,25], and treatment of the latter in the frame-
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work of the quantum mechanical propagator method [26].
Although the most polymer quantities are defined through
the positions of the monomers r(s), (0 ≤ s ≤ N) (the
end-to-end distribution function, the scattering function,
the isotropic monomer-monomer interactions, etc.), and
on the contrary the quantum rigid rotator is formulated
in terms of tangents t(s) = ∂r(s)/∂s, we have shown
that the relations for flexible polymers (polymers in ex-
ternal fields, polymers with self-interactions, etc.) can be
generalized to semiflexible polymer, replacing the Fourier-
Laplace transform of the end-to-end distribution function
of the flexible polymer, 1/(k2/3 + p), by the infinite or-
der matrix P̃ (k, p) = (I + ikDM)−1D with matrices D
and M related to the spectrum of the rigid rotator, and
considering an appropriate matrix element of the matrix
expression. The quantity P̃ (k, p) plays the key role in the
theory similar to the bare propagator in common quantum
field theories. The end-to-end distribution function is sim-
ply the matrix element

〈
0, 0|P̃ (k, p)|0, 0

〉
, the scattering

function of the polymer is the inverse Laplace transform of
G(k, p)/p2 multiplied by 2/N , the partition function of the
stretched polymer is Z(f, N) = G(k = −iF/kBT, N) etc.
The elimination of summations over the magnetic quan-
tum number in intermediate states enables one to carry
out the calculations of above quantities with the infinite
order square matrix P̃ s(k, p). The present theory pro-
vides also the framework to study semiflexible polymers in
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external fields and with self-interactions, and problems in-
cluding the tangents of polymer configurations.

The article is organized as follows. Section 2 introduces
to the Green’s function formalism of the quantum mechan-
ical rigid rotator. Section 3 derives the exact expression
for the Fourier-Laplace transform of the end-to-end distri-
bution function, and establishes its important properties.
Section 4 presents results of the computation of the scat-
tering function of a semiflexible polymer. Section 5 con-
siders the localization of semiflexible polymers in a weak
symmetric potential corresponding to adsorption onto an
interface. Section 6 considers the behaviour of the polymer
in the presence of a surface. Section 7 treats the adsorp-
tion onto a surface. Section 8 introduces to the description
of semiflexible polymers with self-interactions.

2 Formalism

The Fourier transform of the distribution function of
the end-to-end polymer distance of the Kratky-Porod
model [6] G(k, L) =

∫
d3r exp(−ik(r− r0))G(r − r0, L)

is expressed by the path integral as follows

G(k, L) =
∫

Dt(s)
∏
s

δ
(
t(s)2 − 1

)

× exp

(
−ik

∫ L

0

dst(s) − lp
2

∫ L

0

ds

(
∂t(s)
∂s

)2
)

, (1)

where lp is the persistence length, and t(s) = ∂r(s)/∂s
is the tangent vector at the point s along the contour
length of the polymer. The 2nd term in the exponen-
tial is associated with the bending energy. The product
over s in equation (1) takes into account that the poly-
mer chain is locally inextensible. For a polymer which in-
teracts with an external potential and for polymer with
monomer-monomer interactions the terms − ∫ L

0 dsV (r(s))
and − 1

2

∫ L

0 ds2

∫ L

0 ds1U(r(s2)− r(s1)) should be added in
the exponential of equation (1), respectively.

The path integral (1) (without the term depending
on k) corresponds to the diffusion of a particle on unit
sphere, |t(s)| = 1 [4,12], and is also equivalent to the Eu-
clidean quantum rigid rotator [4,25]. The Green’s function
of the quantum rigid rotator or that for diffusion of a par-
ticle on unit sphere obeys the following equation

∂

∂L
P0 (θ, ϕ, L; θ0, ϕ0, 0) − 1

2lp
∇2

θ,ϕP0 = δ(L)δ (Ω − Ω0) ,

(2)
where Ω is the spherical angle characterized by angles θ,
and ϕ, and δ(Ω − Ω0) is a two dimensional delta func-
tion having the property

∫
dΩδ(Ω − Ω0) = 1. Hence-

forth, instead of the contour length L we will use the
number of segments N = L/lp. All lengths will be mea-
sured in units of the persistence length lp. The quan-
tity P (θ, ϕ, N ; θ0, ϕ0, 0) is the Fourier transform of the
end-to-end polymer distance with fixed tangents of both

ends. The Fourier transform of the distribution func-
tion of the end-to-end polymer distance is obtained from
P (Ω, N ; Ω0, 0) by integrating the latter over Ω and Ω0

G(k, N) =
1
4π

∫
dΩ

∫
dΩ0P (Ω, N ; Ω0, 0) . (3)

Notice that in the quantum mechanical counterpart of the
problem N corresponds to the imaginary time it. The bare
Green’s function P0(θ, ϕ, N ; θ0, ϕ0, 0) associated with (2)
reads

P0 (θ, ϕ, N ; θ0, ϕ0, 0) =∑
l,m

exp
(
− l(l + 1)N

2

)
Ylm (θ, ϕ) Y ∗

lm (θ0, ϕ0) , (4)

where Ylm(θ, ϕ) are the spherical harmonics, and l and m
are the quantum numbers of the angular momentum. For
a given l, m takes the values −l, −l+1, ..., l. The quantity
P0(θ, ϕ, N ; θ0, ϕ0, 0) corresponds to equation (1) with k =
0 and with the following boundary conditions for the path
t(s) (0 ≤ s ≤ N): t(N) ≡ (θ, ϕ), and t(0) ≡ (θ0, ϕ0).

We now will consider the Green’s function
P (θ, ϕ, N ; θ0, ϕ0, 0) associated with equation (1). The
differential equation for P is

∂

∂N
P (θ, ϕ, N ; θ0, ϕ0, 0) − 1

2
∇2

θ,ϕP + U(Ω)P =

δ(N)δ (Ω − Ω0) , (5)

where U(ktΩ) = iktΩ is the potential energy of the rigid
rotator in an external field ik, where k is measured in units
of l−1

p . As it is well-known from Quantum Mechanics [26]
the differential equation (5) can be rewritten as an integral
equation as follows

P (Ω, N ; Ω0, 0) = P0 (Ω, N ; Ω0, 0)

−
∫ N

0

ds

∫
dΩ′P0 (Ω, N ; Ω′, s)U (ktΩ′)P (Ω′, s; Ω0, 0) .

(6)

As we already mentioned above equations (4–6) describes
also the Euclidean rigid quantum rotator in an external
field. The iteration of equation (6) generates the perturba-
tion expansion of P (Ω, N ; Ω0, 0) in powers of the potential
U(ktΩ), and can be symbolically written as

P = P0 − P0UP0 + P0UP0UP0 − ... = P0 − P0UP. (7)

The coefficient in front of (k2)n of the expansion of G(k, p)
and consequently of P in powers of k2, multiplied by the
factor (−1)nΓ (2n+2) is the Laplace transform of the mo-
ment 〈r2n〉 of the end-to-end distribution function. Thus,
equation (7) gives the moment expansion of the end-to-end
distribution function. The integral equation (6) is nothing
but the Dyson equation. The description of semiflexible
polymers based on (6–7) is a variant of the application
of the methods of quantum field theory to problems of
statistical mechanics [4,25] (and citations therein).
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3 The end-to-end distribution function
and its moments

3.1 General consideration

We now will consider the computation of the end-to-end
distribution function of a semiflexible polymer using the
propagator method. The matrix elements of the external
potential U(Ω) over the spherical functions are given by

〈l′, m′|U |l, m〉 = ik

∫
dΩY ∗

l′m′(θ, ϕ)(ntΩ)Ylm(θ, ϕ)

≡ ikMl′,m′;l,m(θ1, ϕ1), (8)

where the unit vector t is characterized by the angles θ
and ϕ, and n = k/k by the angles θ1 and ϕ1. Due to the
convolution character of the expression (6) with respect
to the integration over the contour length (P0(Ω, N ; Ω′, s)
depends on the difference N−s), the Laplace transform of
P (Ω, N ; Ω0, 0) in equation (6) with respect to N permits
to get rid of integrations over the contour length. Thus,
in the following we will consider the Laplace transform of
G(k, N) with respect to N . Using the spectral expansion of
P0 according to equation (4) in the perturbation expansion
of P (Ω, N ; Ω0, 0) which is given by equation (7) enables
one to sum the moment expansion of G(k, p) in powers
of k as

G(k, p) =
〈
0, 0|P̃ (k, p)|0, 0

〉
, (9)

where
P̃ (k, p) = (I + ikDM)−1D, (10)

and D is infinite order matrix defined by

Dl,l′ =
1

1
2 l(l + 1) + p

δl,l′ (11)

with l, l′ = 0, 1, .... equation (10) can be also derived via
direct solution of the Dyson equation (7). The zeros at the
brackets in equation (9) means l = 0 and m = 0. Notice
that equations (9–10) have to be understood as quantum
mechanical expectation values, so that summations over
the quantum numbers l and m of the angular momen-
tum in the intermediate states of the series of P̃ (k, p) are
implied.

We now will show that summations over the magnetic
quantum number m in intermediate states in equation (9)
can be eliminated. This can be shown using the fact that
G(k, p) is function of k2, which legitimates us to choose
the z-axes of the coordinate system along k in comput-
ing the matrix elements 〈l′, m′|U |l, m〉. In this case the
scalar product nt in equation (8) becomes simply cos θ,
with the consequence that the matrix elements Ml′,m′;l,m
become diagonal with respect to indices m and m′, so
that the magnetic number will be zero throughout the
products of matrices in the series of P̃ (k, p). As a result
equations (9–10) simplify to

G(k, p) =
〈
0|P̃ s(k, p)|0

〉
(12)

with
P̃ s(k, p) = (I + ikDMs)−1

D, (13)

where the square matrix M s is defined by

M s
l,l′ = wlδl,l′+1 + wl+1δl+1,l′ , (14)

and wl =
√

l2/(4l2 − 1). Summations over the intermedi-
ate states in equations (12–13) occur over the eigenvalues
of the angular momentum l = 0, 1, ..., so that according
to equations (12–13) the calculation of G(k, p) reduces to
the computation of the matrix element of an infinite order
square matrix [23]. Equations (9–10) and (12–13), which
are more general as those derived in [23], enable one to
compute the end-to-end distribution function with fixed
tangents, and to study polymers in external fields and
with self-interactions. The validity of equations (12–13)
can be proved in more general way using the relation

〈
l1, m1|P̃ (k, p)|l2, m2

〉
=∑

m′
Dl1∗

m′,m1
(α, β, γ)

〈
l1|P̃ s(k, p)|l2

〉
Dl2

m′,m2
(α, β, γ),

(15)

where Dl
m,m′(α, β, γ) is the Wigner D-function [27],

Dl
m,m′(α, β, γ) = e−imαdl

m,m′e−im′γ , and α, β, γ are Euler
angles chosen such that the z-axes of the transformed co-
ordinate system is directed along the wave vector k. In
obtaining (15) we have taken into account that the ma-
trix elements

〈
l1, m

′
1|P̃ (k, p)|l2, m′

2

〉
computed in the co-

ordinate system with the z-axes parallel to k are diago-
nal with respect to indices m′

1 and m′
2. Using (15) and

the property of the Wigner D-function, Dl
m,0(α, β, γ) =√

4π/(2l + 1)Y ∗
lm(β, α), one obtains

〈
l, m|P̃ (k, p)|0, 0

〉
=√

4π/(2l + 1)Y ∗
lm(θ1, ϕ1)

〈
l|P̃ s(k, p)|0

〉
. (16)

Equations (15–16) are valid as well for matrix elements of
(DM)n, which are terms in the series of P̃ (k, p) in powers
of k2. Notice that summations over intermediate states
on the left side occur over l and m, while summations on
the right side are only over l, as it is already clear from
notations. To establish equations (12–13) using (16) we
consider the expression

〈
0, 0

∣∣(DM)n1+n2
∣∣ 0, 0

〉
=∑

l,m

〈0, 0 |(DM)n1 | l, m〉 〈l, m |(DM)n2 | 0, 0〉 . (17)

The application of (16) to both off-diagonal matrix el-
ements in (17) combined with the use of the addition
theorem for spherical functions, Pl(cosω) = 4π/(2l +
1)
∑l

m=−l Ylm(θ′, ϕ′)Y ∗
lm(θ, ϕ), with ω being the angle be-

tween the vectors characterized by spherical angles θ′, ϕ′
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G6(k, p) =
1

p

1 +
4 k2

15 (1 + p) (3 + p)
+

9 k2

35 (3 + p) (6 + p)

1 +
k2

3 p (1 + p)
+

4 k2

15 (1 + p) (3 + p)
+

9 k2

35 (3 + p) (6 + p)
+

3 k4

35 p (1 + p) (3 + p) (6 + p)

. (20)

and θ, ϕ, which is zero in the case under consideration,
shows that the summation over m in (17) will be elimi-
nated, and we obtain again equation (12). Equation (15)
enables one to replace P̃ (k, p) in favor of P̃ s(k, p) in the
expression

∑
m

〈
l1, m1|P̃ (k1, p)|l, m

〉〈
l, m|P̃ (k2, p)|l2, m2

〉
=

∑
m′

1,m′
2

Dl1∗
m′

1,m1
(α1, β1, γ1)

〈
l1|P̃ s(k1, p)|l

〉

×
∑
m

Dl
m′

1,m(α1, β1, γ1)Dl∗
m′

2,m(α2, β2, γ2)

×
〈
l|P̃ s(k2, p)|l2

〉
Dl2

m′
2,m2

(α2, β2, γ2), (18)

where the Euler angles αi, βi, γi define the coordinate
system with the z-axes parallel to the wave vector ki.
The limits in summations over the magnet quantum num-
bers in (18) are determined by the corresponding quantum
number of the angular momentum. Equation (18) can be
generalized in a straightforward way for matrix elements
of products of arbitrary number of propagators P̃ (ki, p).
The sum over m in (18) can be carried out using the ad-
dition formula of the Wigner D-function

∑
m′′

Dl
m,m′′(α1, β1, γ1)Dl

m′′,m′(α2, β2, γ2) =

Dl
m,m′(α, β, γ),

where α, β, γ are the Euler angles for the resulting coor-
dinate transformation S → S1 → S2, to give

Dl
m,m′ (α′, β, γ′) . (19)

The angles α′ and γ′ correspond to the coordinate trans-
formation S → S1 → S′

2 with α′
2 = −α2, β′

2 = β2,
γ′
2 = −γ2. Expressions similar to (18) appear in studies of

semiflexible polymers in external fields (adsorption) and
with self-interactions, where in the perturbation expan-
sions of the quantities such as partition function, “prop-
agators” P̃ (ki, p) with different wave vectors ki appear.
The consideration of the expression in the middle line
of (18) containing the sum over m in one dimension,
where the Euler angles take the values αi = γi = 0,
βi = 0, π which means that in this case the wave vec-
tors ki can be only parallel or antiparallel. In this case
the expression (19) reduces to Dl

m,m′(0, 0, 0) = δm,m′

or Dl
m,m′(0, π, 0) = (−1)l+mδm,−m′ . Therefore, the mag-

net quantum numbers in the intermediate states of ex-
pectation values of expressions like (18) over the ground
state will be zero, so that the factors in the intermediate

states (19) become simply (±1)l. The sign minus applies,
if the neighbor wave vectors are antiparallel.

In explicit computations based on equations (12–13)
one should truncate the infinite square matrix P̃ s(k, p) by
a finite matrix of order n. The expression for G(k, p) ob-
tained in this way is a rational function being an infinite
series in powers of k2, i.e. it contains all moments of the
end-to-end distribution function, and describes the first
2n − 2 moments exactly. In context of eigenstates of the
rigid rotator, the truncation at order n takes into account
the eigenstates with quantum number up to the value
l = n − 1. The truncation of P̃ s(k, p) by 4 order matrix,
which is the consequence of corresponding truncation of
the matrices D and M s, yields the Fourier-Laplace trans-
form of the end-to-end distribution function as follows

See equation (20) above.

G6(k, p) is the infinite series in powers of k2, and describes
exactly the first 6 moments of the end-to-end-distribution
function. The moments of the end-to-end distance are ob-
tained from (12) as

〈
R2n−2

〉
= Γ (2n)L−1

p

〈
0
∣∣∣(DM s)2n−2

∣∣∣ 0〉 , (21)

where L−1
p denotes the inverse Laplace transform with re-

spect to p, which is the Laplace conjugate to N . Carrying
out the inverse Laplace transform of (21) using Maple or
Mathematica we have analytically computed 28 moments
of G(r, N) [23]. From the expansion of the exact formula
(12) for large p at different orders of truncations we have
obtained the leading terms of G(k, p) as

1
p
− 1

3p3
k2 +

1
5p5

k4 − 1
7p7

k6 + ...,

which is nothing but the series of the Fourier-Laplace
transform Grod(k, p) = k−1 arctan(k/p) of the end-to-
end distribution function of a stiff rod Grod(r, N) =
(4πN2)−1δ(r − N). Taking into account the subleading
terms in the expansion of G(k, p)

1
3p4

k2 − 2
3p6

k4 +
1
p8

k6 − 4
3p10

k8 + ...

results in the following expansion of the end-end-
distribution function for small N

G(r, N) = Grod(r, N) − N

6
d

dN
Grod(r, N) + ... (22)

The latter can be considered as a singular expansion of the
end-to-end distribution function over its width. In princi-
ple, the expansion (22) can be extended to take into ac-
count the next terms. However, so far we could not sum
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the expansion of the next to subleading terms in equa-
tion (12)

1
p3

(
−1

3

(
k

p

)2

+
29
15

(
k

p

)4

− 86
15

(
k

p

)6

+
38
3

(
k

p

)8

− 71
3

(
k

p

)10

+
119
3

(
k

p

)12

− ...

)
.

3.2 The spectral representation of G(k,p)

The spectral expansion of the matrix A = DM enables
one to derive the representation of P̃ s(k, p) through the
eigenvalues and the eigenvectors of the matrix A. The lat-
ter is useful in the treatment of polymer adsorption, which
is considered in Section 5. The matrix A is not symmetric,
so that to find its spectral expansion one should consider
the eigenvalue problem for both A and the transposed ma-
trix A. The eigenvalues of A and A coincide, while their
(normalized) eigenvectors are different and are denoted by
u(n) and u(n), respectively. Thus, the spectral decompo-
sition of A reads

Aij =
∑

n

λnui(n)uj(n). (23)

Using (23) we obtain P̃ s(k, p) as〈
l|P̃ s(k, p)|l′

〉
=
∑

n

1
1 + ikλn

ul(n)ul′(n)Dl′,l′ . (24)

The eigenvalues λn of A truncated by even order matrix
build pairs with the same absolute values and opposite
sign in the pair, which we denote by ±λk. For odd order A
one eigenvalue is zero, and the remainder build pairs simi-
lar to those for even order matrices. The largest eigenvalue
of A approaches the value 1/

√
3p for p → 0 (the flexible

limit). These properties of the eigenvalues of A enable one
to write G(k, p) as

G(k, p) =
〈
0|P̃ s(k, p)|0

〉
=

1
2p

∑
m

1
1 + k2λ2

m

lm, (25)

where we have introduced the notation lm = u0(m)u0(m).
The summations in (25) has to be carried out over all
eigenvalues. We explicitly computed the eigenvalues and
eigenvectors of A with Maple or Mathematica using trun-
cations until n = 8. The eigenvalues and the factors lm
using truncation with four order matrices are obtained as

λ1 =
√

35

×
(
p
(
18 + 27p + 10p2 + p3

) (
85p + 15p2 + 105 + ∆

))1/2

630p + 945p2 + 350p3 + 35p4

λ3 =
√

35

×
(
p
(
18 + 27p + 10p2 + p3

) (
85p + 15p2 + 105 − ∆

))1/2

630p + 945p2 + 350p3 + 35p4

with ∆ = (7540p2 +1500p3 +15960p+120p4+11025)1/2.

l1 =
1

12∆

(
3∆ − 10p2 + 60p + 315

)
,

l3 =
1

12∆

(
3∆ + 10p2 − 60p− 315

)
.

The use of the spectral representation of G(k, p) given by
equation (25) enables one to carry out easily the inverse
Fourier transform of G(k, p), and reduces the computation
of G(r, N) to performing the inverse Laplace transform of
G(r, p). However, the computation of G(r, N) using trun-
cated expressions results in G(r, N) taking negative values
for large r, and demands a special consideration. Very re-
cently the computation of G(r, N) by using different meth-
ods was considered in [18,19].

Notice the following difference in truncation of (9–10)
with odd and even order matrices. While G(k, p) for even
n behaves for large k as 1/k2, it behaves as const using
truncations with odd n. The moment expansion as well
the expansion for large p of G(k, p) behaves correctly.

3.3 The Markovian property of the end-to-end
distribution function

It is well-known that the end-to-end distribution function
of an ideal continuous flexible polymer (and of a poly-
mer in an external potential) possesses the Markovian
property, which takes in terms of the Fourier transform
P0(k, N) = exp(−k2N/d) of the end-to-end distance,
the simple form, P0(k, N) = P0(k, N − s)P0(k, s). The
Markovian property is obviously not valid in this form
for a semiflexible polymer. Nevertheless, it can be gener-
alized in an appropriate form to a semiflexible polymer,
too. Using the definition of the end-to-end distribution
function (1) we obtain in a straightforward way

G(r − r0, N) =
∫

k

〈
exp(ik(r − r0) − ik

∫ N

0

dst(s))

〉

=
∫

d3r′
〈∫

k2

exp(ik2(r − r′) − ik2

∫ N−s′

s′
dst(s))

×
∫

k1

exp(ik1(r′ − r0) − ik1

∫ s′

0

dst(s))

〉
, (26)

where s′ fulfils the condition 0 ≤ s′ ≤ N . Representing the
average in (26) over the eigenstates of the rigid rotator we
arrive at

〈0|P s(k, N)|0〉 =
∑

l

〈0|P s(k, N − s)|l〉 〈l|P s(k, s)|0〉 ,

(27)
where P s(k, N) is the inverse Laplace transform of the
matrix P̃ s(k, p). Equation (27) is the generalization of
the Markovian property for a semiflexible polymer. Notice
that the summation in (27) occurs only over the quantum
number of the square of the angular momentum l. Simi-
larly, one can show that the Markovian property applies
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to the off-diagonal matrix elements 〈l|P s(k, N)|l′〉, too.
Equation (27) can be immediately generalized by parti-
tioning the interval (0, N) in δs = N/n intervals. The
latter is an important ingredient of our consideration of
the behaviour of a semiflexible polymer in half space (see
Sect. 6).

Notice that the Markovian property of the quantity
〈0, 0|P (k, N)|0, 0〉

〈0, 0|P (k, N)|0, 0〉 =∑
l,m

〈0, 0|P (k, N − s) |l, m〉 〈l, m|P (k, s) |0, 0〉 (28)

is the consequence of the group property of the time evo-
lution operator of the rigid rotator in an external field.
Applying (16) to both transition amplitudes in (28), and
using the addition theorem for spherical functions gives
again equation (27).

3.4 Tangent correlations

We now will consider two examples of computation of
quantities containing tangents. The correlation function
of tangents 〈t(s)t(s′)〉 can be calculated using (4) as

〈t(s)t(s′)〉 =
∑

i=x,y,z

∑
l,m

〈0, 0| ti |l, m〉 e−
1
2 l(l+1)|s−s′|

× 〈l, m| ti |0, 0〉 = e−|s−s′|,
where the arc length is measured in units of lp.

The use of equation (16) enables one to derive the
following exact expression for the Fourier transform of
the end-to-end distribution function with the fixed tan-
gent t(0)

G(t,k; N) =
∑

l

〈0 | P s(k, N) | l〉
√

2l + 1
4π

Pl(tn). (29)

Equation (29) enables one to compute the transversal mo-
ments (with respect to the direction t(0)) of the free end
of the polymer r(N). In the case if the tangent t(0) is
parallel to the z-axes, the scalar product tn in Pl(tn)
in (29) becomes zero. The calculation of the 2nd and the
4th transversal moments using equation (29) in the case
if t(0) ↑↑ ez yield

〈
r2
tr

〉
=

2
9
(
6 N − e−3 N + 9e−N − 8

)
,

〈
r4
tr

〉
=

8
9

(
4 N2 − 248 N

15
+

1834
75

+
3

1225
e−10 N

− 1
25

e−6 N +
80

147
e−3 N − 624

25
e−N

+
4
21

Ne−3 N − 36
5

Ne−N

)
.

The computation of higher moments is similar. For small
N the moments behave as

〈
r2
tr

〉 	 (2/3)N3,
〈
r4
tr

〉 	

(8/9)N6. The N3-dependence of
〈
r2
tr

〉
on N means that

the transversal fluctuations, which are controlled by the
bending energy, are small in comparison to the length
of the polymer N . For large N the moments behave as〈
r2
tr

〉 	 (4/3)N ,
〈
r4
tr

〉 	 (32/9)N2, and obey the relation
between the moments of a Gaussian distribution in two
dimensions,

〈
r4
tr

〉
= 2

〈
r2
tr

〉2. Note that his relation is also
fulfilled for small N . The quotient

〈
r4
tr

〉
/
〈
r2
tr

〉2 has the
minimum equal to 1.36 at N = 1.82.

4 The structure factor of a semiflexible
polymer

In studying the structure factor of a semiflexible polymer
which is defined by

S(q, N) =
2
N

∫ N

0

ds2

∫ s2

0

ds1 〈exp(iq(r(s2) − r(s1)))〉 .

(30)
we first express r(s2) − r(s1) in (30) through the tangent
vectors, r(s2) − r(s1) =

∫ s2

s1
dst(s). Representing the av-

erage in (30) through the eigenstates of quantum rigid
rotator yields that the structure factor of the semiflexi-
ble polymer S(q, N) is the inverse Laplace transform of
G(q, p)/p2 multiplied with the factor 2/N [23]. Figure 1
shows the double logarithmic plot of the structure factor of
a semiflexible polymer as a function of the absolute value
of the scattering vector q (measured in units of lp) us-
ing truncations of the exact matrix expression with finite
order matrices. The slope −1, which is characteristic for
rigid rod behaviour, is also shown as a guide for eyes. Note
that the curves for n = 8 and n = 10 takes exactly into
account 14 and 18 moments of the end-to-end distribution
function, respectively.

The structure factor of a semiflexible polymer ap-
proaches for small N that of a stiff rod. The latter can
be computed using G(k, N) = sin(qN)/qN , carrying out
the inverse Laplace transform of G(k, p)/p2, and multiply-
ing it with 2/N . The result is

S(q, N)rod =
2

Nq2
(NqSi(qN) + cos(qN) − 1),

where Si(x) =
∫ x

0 dt sin(t)/t. The subleading terms in the
expansion of G(k, p) for large p given by (22) result in the
following correction to the structure factor of the stiff rod
for small N

S1(q, N) =
2

3q2
− sin (q N)

q3N
+

cos (q N)
3q2

. (31)

The plots of qS(q, N) and qS(q, N)rod are shown in Fig-
ure 2.

The computation of the structure factor is exact until
the values of q where the curves associated with different
truncations begin to diverge. Thus, the present method
enables one in fact an exact computation of the structure
factor of the Kratky-Porod model without restriction on
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Fig. 1. The log-lot plot of the structure factor of a semiflexible
polymer. The dashed curves: truncations with number of exact
moments n = 14; continuous curves: n = 18.

Fig. 2. The structure factor of a semiflexible polymer, qS(q).
Dashed curves: n = 14, continuous curves n = 18. The struc-
ture factor of rigid rod plotted for N = 0.7 coincides practically
with the dashed curve.

the polymer length. The structure factor computed in [29]
describes the low q range corresponding to the Gaussian
coil region. The exact structure factor for the infinitely
long chain given in [28] is valid only for large q. The ap-
proximative approach used in [31] does not go beyond the
exact description of the exact 2nd moment of the end-to-
end distribution function. The expression of the structure
factor obtained in [30] gives an interpolation between the
Gaussian coil and stiff rod limits.

Besides the interest in its own as an experimentally
accessible quantity, the structure factor can be used within
the random phase approximation [3] to study the effects
of rigidity on the phase behaviour of polymer mixtures of
different architectures [32].

5 Adsorption in a weak symmetric potential

We now will consider the adsorption of a semiflexible
polymer in an external delta-potential U(z) = −uδ(z),
which corresponds to adsorption onto an interface placed
at z = 0. The strength of the potential u is measured in
units of kBT/lp. First we consider the partition function
of the polymer with ends fixed at r and r′ in a general
potential U(r), which reads

Z (r, N ; r′) =〈
δ (r − r(N)) δ (r′ − r(0)) exp

(
−
∫ N

0

dsU (r(s))

)〉
.

(32)

It can be shown in a straightforward way that the Taylor
series of (32) in powers of the interaction potential can be
written as

Z(r, N ; r′) =
∫

k

〈
exp

(
ik(r − r′) − ik

∫ N

0

dst(s)

)〉

+
∞∑

n=1

(−1)n

∫
d3rn...

∫
d3r1 ×

∫
qn

...

∫
q1

U(qn)...U(q1)

×
∫

kn+1

...

∫
k1

exp (iqnrn + ... + iq1r1 + ikn+1(r − rn)

+ikn(rn − rn−1) + ... + ik1(r1 − r′))

×
〈∫ N

0

dsn

∫ sn

0

dsn−1...

∫ s2

0

ds1 exp

(
−ikn+1

∫ N

sn

dst(s)

)

× exp(−ikn

∫ sn

sn−1

dst(s))... exp
(
−ik1

∫ s1

0

dst(s)
)〉

.

(33)

Performing the integrations over ri and ki establishes the
equivalence of equation (33) with the Taylor series of (32).
Expressing the average in (33) through the eigenstates of
the rigid rotator, and carrying out the Laplace transform
with respect to N we obtain the bracket in the 2nd term
of (33) as

〈...〉 =
〈
0, 0|P̃ (kn+1, p)|ln, mn

〉
×
〈
ln, mn|P̃ (kn, p)|ln−1, mn−1

〉
...
〈
l1, m1|P̃ (k1, p)|0, 0

〉
,

(34)

where p is Laplace conjugate to N , and P̃ (kn, p) is given
by equation (10). The summations over li and mi (i =
1, ..., n) are implied in (34).

The partition function Z(z, p; z′) of the polymer in an
adsorbing potential U(z) = −uδ(z) can be obtained from
equation (33) integrating it over r�, so that k�

i in (34)
become zero. The use of equations (18) permits to re-
place the matrices P̃ (kn, p) in favor of the square matrices
P̃ s(kn, p). As it is shown in Section 3.1 the factors (±1)li ,
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where the sign minus corresponds to the case when kz
i

and kz
i−1 have different sign, appear in the intermediate

states. It can be directly shown that the factors (−1)li can
be taken into account by allowing ki in P̃ s(ki, p) to take
positive and negative values. Inserting the delta-potential
U(z) = −uδ(z) into equation (33) we obtain the partition
function of adsorbed polymer as

Z (z, p; z′) =
∫

k

exp (ik (z − z′))
〈
0
∣∣∣P̃ s(k, p)

∣∣∣ 0〉

+
∑
l1,l2

∫
k1

exp(ik1z)
〈
0|P̃ s(k1, p)|l1

〉

× u

〈
l1

∣∣∣∣∣
(

I − (u/2π)
∫ ∞

−∞
dkP̃ s(k, p)

)−1
∣∣∣∣∣ l2
〉

×
∫

k2

exp (−ik2z
′)
〈
l2

∣∣∣P̃ s(k2, p)
∣∣∣ 0〉 , (35)

where I is a diagonal matrix of infinite order. The poles
of the partition function are given by the zero points of
the determinant

det(I − (u/2π)
∫ ∞

−∞
dkP̃ s(k, p)) = 0. (36)

Inserting P̃ s(k, p) = (I + ikDMs)−1D = (I +
k2(DM s)2)−1(I−ikDMs)D into (36) we obtain the eigen-
value condition in the form det(I − (u/2π)

∫∞
−∞ dk(I +

k2(DM s)2)−1D) = 0. We would like to stress that equa-
tions (35–36) are exact for adsorption in a Dirac’s delta-
potential. The formula for the flexible polymer is obtained
from equation (35) by neglecting the off diagonal matrix
elements and using the expression P̃ s(k, p) = 1/(k2/3+p)
for the propagator.

It is interesting question if the energy eigenvalue condi-
tion (36) can be rewritten in terms of the boundary con-
ditions imposed on “a wave function” as it is the case
for a flexible polymer. Such an interpretation of equa-
tions (35–36) would enable one to consider the adsorption
in potentials with finite widths and depths. An heuristic
attempt to treat the adsorption in this way was under-
taken in [22]. Notice that according to the analogy of (35)
with the corresponding equation for a flexible polymers it
is tempting to interpret

∫
k1

exp(ik1z)
〈
0|P̃ s(k1, p)|l1

〉
as

the “wave function” of the localized semiflexible polymer.
The integrations over k in (35) can be carried out using

the spectral representation (23) according to

∫
k

exp(±ikz)
〈
l1|P̃ s(k, p)|l2

〉
=∑

m

f (±)
m (z)ul1(m)ul2(m)Dl2,l2 .

with f
(±)
m (z) =

∫
k
exp(±ikz)(1 − ikλm)/(1 + k2λ2

m) =
|λm|±λm

2λ2
m

exp(− |z/λm|). Note that the integral∫∞
−∞ dzf

(±)
m (z) is equal to 1. The inverse Laplace

transform of (35), which takes into account for large N
the main contributions associated with poles defined by
equation (36), yields

Z(z, N ; z′)bound ∼∑
p0

ep0N
∑
l1,l2

∑
m

f (+)
m (z)u0(m)ul1(m)Dl1,l1

× Al1,l2(p0)
δ(p0)

∑
n

f (−)
n (z′) ul2(n)u0(n)D0,0, (37)

where

δ(p0) = lim
p→p0

det
(

I − (u/2π)
∫ ∞

−∞
dkP̃ s(k, p)

)
/(p − p0),

and Al1,l2(p0) is the adjoint of the matrix element〈
l1|(I − (u/2π)

∫∞
−∞ dkP̃ s(k, p))−1|l2

〉
taken at p0, which

is the zero of (36). Equation (37) is the spectral expan-
sion of the partition function over the localized states, and
shows that the zeros p0 of equation (36) yield the energy
spectrum of the localized semiflexible polymer. The dis-
tribution function for monomers n(z) is calculated using
the expression

n(z) =
1∫

dz
∫

dz′Z (z, N ; z′)

×
∫ N

0

ds

∫
dz′
∫

dz′′Z (z′, N − s; z)0,l Z (z, s; z′′)l,0 ,

(38)

which generalizes the corresponding formula of flexible
polymer [2]. The quantity Z(z′, N ; z)0,l is obtained from
the expression on the right-hand side of (37) by replacing
the index 0 in u0(n) and in D0,0 by l. Further, in comput-
ing n(z) we will take into account only the ground state
(ground state dominance). Inserting (37) into (38) results
in the following expression for the monomer density of
adsorbed polymer

n(z) =
∑
n,m

∑
l2,l,l1

1
δ(p0)

A0,l2(p0)f (−)
n (z)ul2(n)ul(n)

× Dl,lf
(+)
m (z)ul(m)ul1(m)Dl1,l1Al1,0(p0). (39)

The distribution function of one polymer end of adsorbed
polymer, which is defined by

f(z) =
∫

dz′Z (z, N ; z′) /

∫
dz

∫
dz′Z (z, N ; z′) ,

results after inserting (37) and using the approximation
of ground state dominance in the following expression

f(z) =
∑
l,n

f (+)
n (z)u0(n)ul(n)Dl,lAl,0(p0)/A0,0(p0)/D0,0.

(40)
We have mentioned in Section 3.2 that G(k, p) behaves

differently for large k in using truncations with odd or
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even order matrices. This is now important because equa-
tion (36) contains integrals over k of P̃ s(k1, p). Notice that
the matrix elements in (36) which are odd in k vanish
because the integration is carried out in symmetric lim-
its. While G(k, p), which corresponds to an odd trunca-
tion, does not have well-defined inverse Fourier transform
with respect to k due to the divergence of the integral for
large k, we will use truncations with even order matrices.
At present we do not have a more reasonable explanation
for this behaviour of G(k, p) for odd and even n for large k.

Thus, we will use in equation (36) truncations with
even order matrices, and will study the energy eigenvalue
condition for n = 4 and n = 6, where 6 and 10 moments
of the end-to-end distribution function are exact, respec-
tively. The use of the spectral decomposition of the matrix
DM s according to (23) permits to perform easily the inte-
gration over k. As a result we have obtained from (36) the
following relations between the adsorption strength u and
the localization energy E in the vicinity of the localization
transition

u =
2√
3

√−E − 8
9

√
14
5

(−E)

−
√

3
2939
405

(−E)3/2 + O
(
(−E)2

)
, n = 4 (41)

u =
2√
3

√−E − 2.264(−E)

− 2.0854(−E)3/2 + O
(
(−E)2

)
, n = 6 (42)

The 1st term on the right side of equations (41–42) is the
result for a flexible polymer written in units under consid-
eration, where the dimensionless adsorption strength and
the energy are measured in units of kBT/lp and lp, respec-
tively. The relation l =

√
2lp allows to replace the persis-

tence length in favor of the statistical segment length l.
Equations (41–42) show that the applicability of adsorp-
tion theory of flexible polymer is in fact restricted to the
localization transition u → 0. For all finite u there are
corrections due to the polymer stiffness.

The normalized monomer density at the localization
energy −E ≡ p0 = 0.8, which is computed from equa-
tion (38) using truncation with matrices of order 4, reads

n(z) = 0.42e−3.84z + 2.35e−12.78z + 4.52e−21.73z. (43)

In contrast, the monomer density for a flexible polymer
for the same localization energy is

nfl(z) = 1.55e−3.10z.

Equation (43) shows that the decay of the monomer den-
sity of adsorbed semiflexible polymer is not exponential.
This is also seen in Figure 3 displaying the logarithmic
plot of the monomer density for two different localiza-
tion energies. The monomer density for flexible polymer
is also shown for comparison. As it follows from equa-
tion (39) and from the expression of the factor f

(±)
m (z)

Fig. 3. The normalized monomer density of adsorbed polymer.
Solid line: adsorption energy p = 0.8, adsorption strength u =
0.375; dots: p = 0.3, u = 0.305; dashes: flexible polymer at
p = 0.3, u = 2p/

√
3 = 0.346.

the decay of n(z) away from the interface is controlled by
the length |λ1| /2, where λ1 is the largest eigenvalue of the
matrix DM s. At z smaller than zc ≈ 0.22, which is de-
termined by the condition that the first term in (43) have
the same value as the rest, the decay of n(z) is sharper,
and is determined by the length |λ1λ2| /(|λ1|+|λ2|), where
λ2 is the next largest eigenvalue of DM s. The behaviour
for z < zc is likely to be ascribed to formation of the
liquid-crystalline ordering of the polymer caused by align-
ment of the pieces of adsorbed polymer along the interface.
The length zc separating the faster and the slower decays,
can be interpreted as the correlation length of the liquid-
crystalline ordering induced by the interface. The analysis
of the behaviour of n(z) for n = 4 shows that in approach-
ing the localization transition p0 → 0 the prefactors in
front of the 2nd and 3rd exponents in equation (43) tend
to zero faster than that in front of the first term, which
tends to the value

√
3p0, which is the result of the flexible

polymer. For truncations with n×n matrices the monomer
density n(z) is according to equation (39) a superposition
of n(n + 2)/8 exponents. We expect that similar to the
case n = 4 the monomer density tends to that of the flex-
ible polymer in approaching the localization transition,
p0 → 0.

It is surprising that the leading correction in equa-
tions (41–42) to adsorption of flexible polymer depends
on the order of truncations. We expect that at given ad-
sorption strength there are pieces of the polymer with
characteristic size depending on u, which are completely
adsorbed and are aligned along the interface. The order
of truncation should be such that the statistics of these
pieces is described accurately. With increasing u the size of
these pieces increases too, which demands more accurate
description by using the higher order matrices. However,
the extreme narrowness of the delta-potential demands
high accuracy on quite small scales, which is apparently
the reason why the leading correction is different for n = 4
and n = 6. Figure 4 shows the distribution function of
one polymer end of adsorbed polymer computed using
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Fig. 4. The normalized distribution of one polymer end of
adsorbed polymer. Solid line: adsorption energy p = 0.8; dots:
p = 0.3; dashes: flexible polymer at p = 0.3.

equation (40). Similar to Figure 3 we see here different
dependence on z for small and large z.

Note that truncation of equation (36) with 2 × 2 ma-
trices, where only the 2nd moment of the end-to-end dis-
tribution function is taken exactly into account, yields the
leading correction to the flexible limit as (−E)3/2 instead
of (−E) in accordance with equation (41). Thus, trunca-
tion with n = 2 does not correctly describe the leading
correction to the flexible polymer.

Equation (41) shows that the correction term is neg-
ative, i.e. the localization energy for semiflexible polymer
at the same strength of the attraction potential is higher
than that for flexible one. This conclusion is in agreement
with preceding studies [33–39]. Adsorption of a semiflexi-
ble polymer considered in [40–45], was carried out in the
framework of the model, which is semiflexible on all scales.
This model cannot describe the regime of weak adsorption
considered in the present work.

6 A semiflexible polymer in half space

The Fourier transform of the end-to-end distribution
function (12) can be written in terms of the cumulants∫ N

0
dsµ2n(s) of the moments as

G(k, N) = exp

(
−

∞∑
n=1

∫ N

0

dsµ2n(s)
(
k2
)n)

.

It is easy to see that the latter results in the following dif-
ferential equation for the end-to-end distribution function

∂ G(r − r0, N)
∂N

−
∞∑

n=1

(−1)n+1µ2n(N)∆n
r G(r − r0, N) = 0,

(44)
where ∆ = ∇2 is the Laplace operator. Equation (44),
which is exact, enables one to derive the partition func-
tion of a semiflexible polymer in half space z ≥ 0 with
Dirichlet condition at the boundary. Taking into account

that G(r =
√

(r� − r�

0)2 + (z + z0)2, N) also obeys equa-
tion (44), the partition function of the semiflexible poly-
mer in half space with Dirichlet boundary condition at
z = 0 can be written as

Z (r, r0, N) = G

(√(
r� − r�

0

)2
+ (z − z0)

2
, N

)

− G

(√(
r� − r�

0

)2
+ (z + z0)2, N

)
. (45)

However, it is not clear from the above derivation if the
trajectories of the polymer associated with Z(r, r0, N)
obey the Dirichlet boundary condition at intermediate
points, 0 < s < N . The following derivation of (45)
based on the use of the Markovian property of the end-
to-end distribution function enables one to prove this.
Partitioning the interval (0, N) in n + 1 equal intervals
δs = N/(n + 1) we obtain

G (r − r0, N) =
∫

d3rn...

∫
d3r1

∫
kn+1

...

∫
k1

× exp (ikn+1 (r − rn) + ikn (rn − rn−1) + ...

+ik1 (r1 − r0)) 〈0 |P s (kn+1, N − sn)
×P s (kn, sn − sn−1) ...P s (k1, s1)| 0〉 . (46)

Notice that ki in the argument of P s(ki, si − si−1) is the
absolute value of ki. The dependencies on positions rm in
equation (46) are the same as in the corresponding equa-
tion for a flexible polymer, which is obtained from (46) re-
placing the factors P̃ s(k, p) by Pfl(k, N) = exp(−k2N/3),
and taking into account in the intermediate states only the
term with l = 0. In order to obtain from (46) the parti-
tion function of the polymer in half space we will proceed
in the same manner as for flexible polymers, and replace
the factors exp(ikm(rm − rm−1)) in (46) for m = 1, ..., n
according to

exp (ikm (rm − rm−1)) → 1
2

exp
(
ik�

m

(
r�

m − r�

m−1

))
× (exp (i (kz

m (zm − zm−1)) − exp (i (kz
m (zm + zm−1)))) .

(47)

For m = n + 1 we use the replacement (47) without the
factor 1/2. Inserting the latter into equation (46) gives the
partition function of the semiflexible polymer with fixed
ends in the presence of a surface at z = 0 as

Z(r, r0, N) =
∫

d3rn...

∫
d3r1

∫
kn+1

...

∫
k1

× exp(ik�

n+1(r
� − r�

n) + ik�

n(r�

n − r�

n−1) + ...

+ ik�

1(r
�

1 − r�

0))2
−n(exp(ikz

n+1(z − zn))

− exp(ikz
n+1(z + zn)))...(exp(ikz

1(z1 − z0))

− exp(ikz
1(z1 + z0))) 〈0|P s(kn+1, N − sn)

×P s(kn, sn − sn−1)...P s(k1, s1)|0〉 . (48)



S. Stepanow: Statistical mechanics of semiflexible polymers 509

Z(r, r0, N) becomes zero, if z, z0 or any intermediate co-
ordinate zm (m = 1, ..., n) are zero. Thus, the expres-
sion (48) for Z(r, r0, N) fulfils in the limit n → ∞ the
Dirichlet boundary condition z(s) = 0 (0 ≤ s ≤ N), and
consequently equation (48) gives the partition function of
the semiflexible polymer with both ends fixed in the pres-
ence of a wall at z = 0.

We now will show that in the limit δs → 0 equa-
tion (48) passes over to equation (45). To arrive at this re-
sult we carry out successively integrations over rm in (48).
The integration over r�

m gives (2π)d−1δ(k�

m−k�

m+1) while
the integration over zm yields

2π(exp(ikz
m+1zm+1 − ikmzm−1)δ(kz

m+1 − kz
m)

− exp(ikz
m+1zm+1 + ikmzm−1)δ(kz

m+1 − kz
m)

− exp(ikz
m+1zm+1 − ikmzm−1)δ(kz

m+1 + kz
m)

+ exp(ikz
m+1zm+1 + ikmzm−1)δ(kz

m+1 + kz
m)). (49)

In obtaining (49) we have taken into account that
P s(km, sm − sm−1) depends on the absolute value of km,
and consequently can be written as common factor. Using
the Markovian property of the distribution function (27)
at the interval (sm+1, sm−1), we obtain again the expres-
sion (48) with the difference that the point sm is now
missed, and the prefactor in front of (48) will be 2−n+1.
Repeating this procedure n times we finally obtain

Z(r, r0, N) =
∫

k

exp(ik�(r� − r�

0)) (exp(ikz(z − z0))

− exp(ikz(z + z0))) 〈0|P (k, N)|0〉
= G(

√
(r� − r�

0)2 + (z − z0)2, N)

− G(
√

(r� − r�

0)2 + (z + z0)2, N). (50)

The above derivation guarantees that the trajectories of
the polymer r(s) contacting the surface at an arbitrary
point s ∈ (0, N) do not contribute to Z(r, r0, N).

The derivation of (48–50) is based on the Markovian
property of the end-to-end distribution function given by
equation (28), and the dependence of P s(k, N) on the ab-
solute value of the wave vector k. The statistical weights
of configurations, which are determined by the expres-
sion in the brackets in equation (48) and are different for
flexible and semiflexible polymers, do not play a direct
role in the above derivation. The circumstance that the
subtracted terms, which result in the 2nd term of equa-
tion (50), obey the infinite order differential equation of
the free polymer (44), guarantees that the polymer config-
urations contributing to Z(r, r0, N) are those of the free
polymer. Note that equations (45, 50) are also valid for
stiff rod, |r − r0| = N , where the second term, which is
not zero only if z or z0 are zero, selects the conformations,
which do not have contact with the boundary.

6.1 Behaviour of a semiflexible polymer
in the vicinity of a wall

Equation (50) enables one to study the behaviour of a
semiflexible polymer in the vicinity of a wall. For this goal

Fig. 5. The distribution function of one polymer end as a
function of the distance to the wall for different persistence
lengths. Solid line: L/lp = 10; dashes: L/lp = 1.5; dots: L/lp =
0.3.

we will use the approximative but simple analytic form of
the end-to-end distribution function derived in [16]

G0(r, L) =
1

(1 − r2)9/2
exp

(
− 9L

8lp(1 − r2)

)
, (51)

where r in equation (51) and throughout this subsection
is measured in units of the contour length L, so that as a
consequence that the polymer chain is locally inextensible,
the distance r fulfils the inequality r ≤ 1. The computa-
tions can also be carried out with end-to-end distribution
functions derived recently in [18,19].

To compute the distribution function G(r, r0, N) with
one end of the polymer fixed at distance z to the wall, we
integrate equation (50) over r� − r�

0 and z0, and obtain

w(z) = π

∫ 1

1−z2

dβ√
1 − β

∫ β

0

dxg0(x), (52)

where g0(x) is the normalized G0(r, L) and x = 1−r2. The
integration over x can be performed analytically, while the
integration over β only numerically. Figure 5 shows w(z)
for different ratios L/lp. For z = 1 the polymer just begin
to contact the wall, so that w(z = 1) = 1. For large L/lp
the semiflexible polymer is a coil with the size which is
proportional to

√
L, so that the effect of the wall on w(z)

appears at smaller z. For small L/lp the polymer behaves
as stiff rod, and w(z) decreases linearly at small z. Fig-
ure 5 shows that at given distance of the polymer end to
the wall z, and for given contour length L, the distribu-
tion function w(z) is larger for polymers which are more
flexible.

To compute the projection of the mean-square end-
to-end polymer distance parallel to the wall under the
condition that one end of the polymer is fixed at distance z
to the wall we average (r� − r�

0)
2 using equations (50–51).

The normalization of the result with w(z) gives

〈
(r� − r�

0)
2
〉

z
= π

∫ 1

1−z2

dβ√
1 − β

∫ β

0

dx(β − x)g0(x)/w(z).

(53)
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Fig. 6. The in-plane mean-square end-to-end distance of the
polymer as a function of the distance of one polymer end to
the wall for different persistence lengths. Solid line: L/lp = 10;
dashes: L/lp = 1.5; dots: L/lp = 0.3.

Fig. 7. The force acting on the wall as a function of the dis-
tance to the wall for different persistence lengths. Solid line:
L/lp = 10; dashes: L/lp = 1.5; dots: L/lp = 0.3.

Figure 6 shows the mean-square end-to-end distance par-
allel to the wall as a function of z for different values of
L/lp computed using equation (53). While for Gaussian
polymer the dependencies on longitudinal and transverse
distances separate,

〈
(r� − r�

0)
2
〉

z
does not depend on z.

In rod limit, L/lp � 1,
〈
(r� − r�

0)
2
〉

z
is a linear func-

tion having the values 1 and 2/3 at z = 0 and z = 1,
respectively. The approximate distribution function (51)
reproduces qualitatively the rod behaviour.

Figure 7 shows the force f(z) = ∂ ln w(z)/∂z acting on
the polymer as a function of the distance of one polymer
end to the wall. As in the case of the distribution func-
tion w(z) the force begins to deviate from zero for more
flexible polymer at smaller z. For very stiff polymer there
are two regimes in the behaviour of the force. Just below
z ≤ 1 the force increase is sharp, and becomes weaker
with further decrease of z. We attribute this initial sharp
increase of the force to the bending of the rod. It is intu-
itively clear that if the polymer just begin to contact the
surface, z ≤ 1, the bending gives the major contribution
to the force. With further decrease of z the configurations

with large bending are less probable, and the increase of
the force is of entropic origin.

7 Adsorption of a semiflexible polymer
onto a surface

In considering the adsorption of a semiflexible polymer in
a weak surface potential defined by U(z)) = −uδ(z − z0)
for z > 0 and U(z)) = ∞ for z ≤ 0, where the attractive
delta-potential is placed at the distance z0 to the wall, we
chose as a reference state the distribution function in half
space (50), and expand the partition function in Taylor
series in powers of the attractive part of the potential. As
a result we obtain the Laplace transform of the partition
function of the polymer Z(z, p; z′) as

Z(z, p; z′) =
∫

k

(exp(ik(z − z′)) − exp(ik(z + z′)))

×
〈
0
∣∣∣P̃ s(k, p)

∣∣∣ 0〉+
∫

k1

(exp(ik1(z − z0))

− exp(ik1(z + z0)))
∫

k2

(exp(ik2(z0 − z′))

− exp(ik2(z0 + z′)))u

〈
0
∣∣∣∣P̃ s(k1, p)

×
(

I − u

∫
k

(
1 − exp (2ikz0)

)
P̃ s(k, p)

)−1

P̃ s(k2, p)
∣∣∣∣0
〉

.

(54)

The procedure of Section 6 which we used to derive equa-
tion (50) starting with (48) guarantees that in expressions
like

∫
k (exp(ik(z − z0)) − exp(ik(z + z0))) P̃ s(k, N) enter-

ing (54), where k in P̃ s(k, N) takes both positive and neg-
ative values, the Dirichlet boundary condition at z = 0 is
correctly taken into account along the contour length of
the polymer.

The poles of the partition function, which are the zero
points of the determinant

det(I − u

∫
k

(1 − exp(2ikz0))P̃ s(k, p)) = 0 (55)

gives the localization energy of adsorbed polymer. The
truncation of P̃ s(k, p) by a finite order matrix permits to
study the adsorption of a semiflexible polymer in a week
surface potential. Truncation with matrix of order n gives
the eigenvalue condition from (55) as a polynomial of nth
degree in powers of u. Due to the same reasons as for ad-
sorption in a symmetric potential we will evaluate (55)
using truncations with even size matrices. We will study
here only the effect of polymer stiffness on the thresh-
old value of the strength of the adsorbing potential u,
i.e. equation (55) for p = 0. For a flexible polymer the
threshold value of the potential strength uc, such that for
u < uc the polymer is delocalized, obeys the condition
1 − 3ucz0 = 0. The computation using truncation with
4 × 4 matrices at the value z0 = 1/3 gives the critical
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value of the localization strength uc = 0.3285, which is
smaller than uc = 1 for flexible polymer, and shows that
the semiflexible polymer adsorbs easier than the flexible
one.

8 Semiflexible polymers
with monomer-monomer interactions

The formalism developed in this work enables one to study
semiflexible polymers with monomer-monomer interac-
tions which are described by the energy U(r(s1) − r(s2))
(in units of kBT ). We will restrict ourselves to one poly-
mer, and similar to corresponding treatment for flexible
polymers [4] will consider the correlation function

G(k,k′; N) =

〈
exp(−ikr(N) − ik′r(0)

− 1
2

∫ N

0

ds2

∫ N

0

ds1U(r(s2) − r(s1)))

〉
, (56)

where the average has to be carried out in accordance
with equation (1). To derive the perturbation expansion
of G(k,k′; N) we expand (56) in powers of the interac-
tion energy, which is supposed to be expanded in Fourier
integral, order the integrations over the contour length,
and express all monomer positions entering (56) through
the tangents according to r(s2) − r(s1) =

∫ s2

s1
dst(s) and

r(N) = r(0) +
∫ N

0 dst(s). The integration over r(0) gives
the factor (2π)3δ(3)(k+k′). Similar to Sections 5 and 7 we
finally arrive at the following expression under the average

〈
exp

(
−ik

∫ N

s2n

dst(s)

)
exp

(
− iQn

×
∫ s2n

s2n−1

dst(s)

)
... exp

(
− iQ1

∫ s1

0

dst(s)

)〉
, (57)

where the momenta Qn, ..., Q1 are expressed by k and
qn, ..., q1 using the momentum conservation in complete
analogy to flexible polymers [4]. Using the representation
of (57) through the eigenstates of the quantum rigid rota-
tor we obtain finally the Laplace transform of G(k,k′; N)
as∫

qn

...

∫
q1

U(qn)...U(q1)

×
〈
0, 0|P̃ (k, p)P̃ (Qn, p)...P̃ (Q1, p)|0, 0

〉
. (58)

The use of the relation (18) enables one to eliminate
the propagators P̃ (Qi, p) in favor of square matrices
P̃ s(Qi, p). Notice that to obtain from (58) the correspond-
ing expression for a flexible polymer one should replace
all P̃ (q, p) in (58) through 1/(q2/3 + p), and take into
account in sums only the term with li = 0. Thus, the

comparison of (58) with the corresponding expression for
a flexible polymer shows that the perturbation expansion
of the correlation function G(k,k′; p) for a semiflexible
polymer in powers of the interaction energy can be repre-
sented by the same graphs as those for flexible polymers.
However, the association of the graphs with analytical ex-
pressions occurs according to equation (58). The pertur-
bation expansion given by equation (58) and its straight-
forward generalization to many polymers is the basis for
studies of semiflexible polymers with monomer–monomer
interactions.

9 Conclusion

To conclude, we have developed the statistical-mechanical
theory of semiflexible polymers based on the connection
between the Kratky-Porod model of a semiflexible poly-
mer and the quantum rigid rotator in an external homo-
geneous field, and the treatment of the latter using the
quantum mechanical propagator method. The examples
considered in this article show that expressions and rela-
tions existing for flexible polymers can be generalized in a
straightforward way to semiflexible ones. The correspon-
dence is established via the replacement of the propagator
of the theory of flexible polymer through the matrix in the
theory of semiflexible polymers

1
k2/3 + p

→ (I + ikDM)−1D, (59)

and consideration of an appropriate matrix element of the
matrix expression associated with the quantity under con-
sideration. The present method provides also a necessary
framework to study problems including tangents of poly-
mer configurations.

The support from the Deutsche Forschungsgemeinschaft
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43. R. Bundschuh, M. Lässig, Phys. Rev. E 65, 061502 (2002)
44. J. Kierfeld, R. Lipowsky, Europhys. Lett. 62, 285 (2003)
45. P. Benetatos, E. Frey, Phys. Rev. 67, 051108 (2003)


